
©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.5 Abstract Classes and Pure virtual

Functions (cont.)

• Although we cannot instantiate objects of an

abstract base class, we can use the abstract

base class to declare pointers and references

that can refer to objects of any concrete classes

derived from the abstract class.

• Programs typically use such pointers and

references to manipulate derived-class objects

polymorphically.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.6 Case Study: Payroll System Using

Polymorphism

• This section reexamines the

CommissionEmployee-

BasePlusCommissionEmployee

hierarchy that we explored throughout

Section 11.3. We use an abstract class and

polymorphism to perform payroll calculations

based on the type of employee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.6 Case Study: Payroll System Using

Polymorphism (cont.)

• We create an enhanced employee hierarchy to solve the
following problem:
– A company pays its employees weekly. The employees are of three

types: Salaried employees are paid a fixed weekly salary regardless
of the number of hours worked, commission employees are paid a
percentage of their sales and base-salary-plus-commission
employees receive a base salary plus a percentage of their sales. For
the current pay period, the company has decided to reward base-
salary-plus-commission employees by adding 10 percent to their
base salaries. The company wants to implement a C++ program that
performs its payroll calculations polymorphically-.

• We use abstract class Employee to represent the general
concept of an employee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.6 Case Study: Payroll System Using

Polymorphism (cont.)

• The UML class diagram in Fig. 12.7 shows the inheritance
hierarchy for our polymorphic employee payroll
application.

• The abstract class name Employee is italicized, as per the
convention of the UML.

• Abstract base class Employee declares the ―interface‖ to
the hierarchy—that is, the set of member functions that a
program can invoke on all Employee objects.

• Each employee, regardless of the way his or her earnings
are calculated, has a first name, a last name and a social
security number, so private data members firstName,
lastName and socialSecurityNumber appear in
abstract base class Employee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.6.1 Creating Abstract Base Class

Employee

• Class Employee (Figs. 12.9–12.10, discussed in further
detail shortly) provides functions earnings and print,
in addition to various get and set functions that manipulate
Employee’s data members.

• An earnings function certainly applies generally to all
employees, but each earnings calculation depends on the
employee’s class.

• So we declare earnings as pure virtual in base class
Employee because a default implementation does not
make sense for that function—there is not enough
information to determine what amount earnings should
return.

• Each derived class overrides earnings with an
appropriate implementation.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.6.1 Creating Abstract Base Class

Employee (cont.)

• To calculate an employee’s earnings, the program assigns the address of an
employee’s object to a base class Employee pointer, then invokes the
earnings function on that object.

• We maintain a vector of Employee pointers, each of which points to an
Employee object (of course, there cannot be Employee objects, because
Employee is an abstract class—because of inheritance, however, all objects
of all concrete derived classes of Employee may nevertheless be thought of
as Employee objects).

• The program iterates through the vector and calls function earnings for
each Employee object.

• C++ processes these function calls polymorphically.

• Including earnings as a pure virtual function in Employee forces
every direct derived class of Employee that wishes to be a concrete class to
override earnings.

• This enables the designer of the class hierarchy to demand that each derived
class provide an appropriate pay calculation, if indeed that derived class is to be
concrete.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.6.1 Creating Abstract Base Class

Employee (cont.)

• Function print in class Employee displays the first
name, last name and social security number of the
employee.

• As we’ll see, each derived class of Employee overrides
function print to output the employee’s type (e.g.,
"salaried employee:") followed by the rest of the
employee’s information.

• Function print could also call earnings, even though
print is a pure-virtual function in class Employee.

• The diagram in Fig. 12.8 shows each of the five classes in
the hierarchy down the left side and functions earnings
and print across the top.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.6.1 Creating Abstract Base Class

Employee (cont.)

• For each class, the diagram shows the desired results of
each function.

• Italic text represents where the values from a particular
object are used in the earnings and print functions.

• Class Employee specifies ―= 0‖ for function earnings
to indicate that this is a pure virtual function.

• Each derived class overrides this function to provide an
appropriate implementation.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.6.1 Creating Abstract Base Class

Employee (cont.)

Employee Class Header

• Let’s consider class Employee’s header (Fig. 12.9).

• The public member functions include a constructor that
takes the first name, last name and social security number as
arguments (lines 11-12); a virtual destructor (line 13); set
functions that set the first name, last name and social
security number (lines 15, 18 and 21, respectively); get
functions that return the first name, last name and social
security number (lines 16, 19 and 22, respectively); pure
virtual function earnings (line 25) and virtual
function print (line 26).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.6.1 Creating Abstract Base Class

Employee (cont.)

Employee Class Member-Function Definitions

• Figure 12.10 contains the member-function definitions for
class Employee.

• No implementation is provided for virtual function
earnings.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

